If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-36x-16=0
a = 20; b = -36; c = -16;
Δ = b2-4ac
Δ = -362-4·20·(-16)
Δ = 2576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2576}=\sqrt{16*161}=\sqrt{16}*\sqrt{161}=4\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-4\sqrt{161}}{2*20}=\frac{36-4\sqrt{161}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+4\sqrt{161}}{2*20}=\frac{36+4\sqrt{161}}{40} $
| 6y+3=8y-29 | | 1.3(8-6)+3.7g=-5.2g | | 11g=4(9g-5)-18 | | -3-7m=-10-6m | | -3u(u-7)(u-5)=0 | | 6x-3(3x-2)=9 | | w−14=65 | | 4x2-24x+12=0 | | 4j+6=5j+10 | | 1.3(8-6)+3.7g=-5.2 | | 17x-105=2x | | 15×28.3=x | | -10g=-2-9g | | (2x-4)+(2x-11)+x=180 | | x+2/3x=6/14 | | 8=3/5x | | -5k=-2-3k | | 3x+-9=-12 | | 19+3+11=p,2p= | | 3-1/5x=11 | | 33=8^5z+4 | | |5x+2|=6 | | 3k+5(6+3k)=156 | | -7.6(x-1.5)=15.2 | | 19x-x2-94=0 | | 12r^2+4r-1=0 | | 64=26+8n,n= | | 4^(1-2x)=32 | | 16*x=128 | | 3-8a+3a=8 | | 4x*12=48 | | 8x-16=320 |